Hauscurriculum¹ Physik Qualifikationsphase für Kurse auf grundlegendem Anforderungsniveau

(Stand Juni 2019)

Die vier vorgegebenen Themengebiete für die Qualifikationsphase werden auf die vier Habjahre wie folgt verteilt:

- 12.1: Elektrizität
- 12.2: Schwingungen und Wellen
- 13.1: Quantenobjekte
- 13.2: Atomhülle und Atomkern

In den folgenden Tabellen werden die verbindlichen inhaltsbezogenen Kompetenzen (in Verbindung mit ausgewählten prozessbezogenen Kompetenzen) dargestellt, die am Ende der Qualifikationsphase erworben sein sollen.

12.1: Elektrizität

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen
Die Schülerinnen und Schüler	
beschreiben elektrische Felder durch ihre Kraft- wirkungen auf geladene Probekörper.	 skizzieren Feldlinienbilder für das homogene Feld und das Feld einer Punktladung. beschreiben die Bedeutung elektrischer Felder für eine technische Anwendung.
 nennen die Einheit der Ladung und erläutern die Definition der elektrischen Feldstärke. beschreiben ein Verfahren zur Bestimmung der elektrischen Feldstärke auf der Grundlage von Kraftmessungen. 	werten in diesem Zusammenhang Messreihen angeleitet aus.
 beschreiben den Zusammenhang zwischen Ladung und elektrischer Stromstärke. nennen die Definition der elektrische Spannung als der pro Ladung übertragbaren Energie. 	
 beschreiben den Zusammenhang zwischen der Feldstärke in einem Plattenkondensator und der anliegenden Spannung. geben die Energiebilanz für einen freien geladenen Körper im elektrischen Feld eines Plattenkondensators an. 	ermitteln angeleitet die Geschwindigkeit eines geladenen Körpers im homogenen elektrischen Feld eines Plattenkondensators mithilfe dieser Energiebilanz.

¹ unter Berücksichtigung des *Kerncurriculum für das Gymnasium – gymnasiale Oberstufe Physik* (nds. Kultusministerium Hannover 2017)

beschreiben den Entladevorgang eines Kondensators mithilfe einer Exponentialfunktion.	 führen angeleitet Experimente zum Entladevorgang durch. ermitteln aus den Messdaten den zugehörigen t-I-Zusammenhang. begründen die Auswahl einer exponentiellen Regression auf der Grundlage der Messdaten. ermitteln die geflossene Ladung mithilfe von t-I-Diagrammen.
nennen die Definition der Kapazität eines Kondensators.	 führen ein Experiment zur Bestimmung der Kapazität eines Kondensators durch. beschreiben eine Einsatzmöglichkeit von Kondensatoren in technischen Systemen.
 beschreiben magnetische Felder durch ihre Wirkung auf Kompassnadeln. ermitteln Richtung (Dreifingerregel) und Betrag der Kraft auf einen stromdurchflossenen Leiter im homogenen Magnetfeld. 	ermitteln die Richtung von magnetischen Feldern mit Kompassnadeln.
 berechnen die magnetische Flussdichte B (Feldstärke B) im Inneren einer mit Luft gefüllten, schlanken Spule. nennen die Definition der magnetischen Flussdichte B (Feldstärke B) in Analogie zur elektrischen Feldstärke. 	 erläutern ein Experiment zur Bestimmung von B mithilfe einer Stromwaage. begründen die Definition mithilfe geeigneter Messdaten.
 beschreiben die Bewegung von freien Elektronen: unter Einfluss der Lorentzkraft, unter Einfluss der Kraft imhomogenen elektrischenQuerfeld 	begründen den prinzipiellen Verlauf der Bahn- kurven.
erläutern die Entstehung der Hallspannung.	 führen Experimente zur Messung von B mit einer Hallsonde durch. skizzieren Magnetfeldlinienbilder für einen geraden Leiter und eine Spule.
beschreiben die Erzeugung einer Induktionsspan- nung qualitativ.	führen einfache qualitative Experimente zur Erzeugung einer Induktionsspannung durch.
 nennen den Zusammenhang zwischen Indukti- onsspannung und einer linearen zeitlichen Ände- rung von B. 	werten geeignete Versuche bzw. Diagramme zur Überprüfung des Induktionsgesetzes für den Fall linearer Änderungen von <i>B</i> aus.

12.2: Schwingungen und Wellen

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen
Die Schülerinnen und Schüler	
 stellen harmonische Schwingungen grafisch dar. beschreiben harmonische Schwingungen mithilfe von Amplitude, Periodendauer und Frequenz. 	 verwenden die Zeigerdarstellung oder Sinus- kurven zur grafischen Beschreibung. haben Erfahrungen im Ablesen von Werten an einem registrierenden Messinstrument (Oszil- loskop und Interface).
geben die Gleichung für die Periodendauer eines Feder-Masse-Pendels und das lineare Kraftgesetz an.	bestätigen die zugehörigen Abhängigkeiten ex- perimentell.

 beschreiben die Ausbreitung harm. Wellen. beschreiben harmonische Wellen mithilfe von Periodendauer, Ausbreitungsgeschwindigkeit, Wellenlänge, Frequenz, Amplitude und Phase. geben den Zusammenhang zwischen Wellen- 	verwenden Zeigerketten oder Sinuskurven zur grafischen Darstellung.
länge und Frequenz an.	wenden die zugehörige Gleichung an.
vergleichen longitudinale und transvers. Wellen.	
 beschreiben und deuten Interferenzphänomene für folgende "Zwei-Wege-Situationen": Michelson-Interferometer, Doppelspalt 	 verwenden die Zeigerdarstellung oder eine andere geeignete Darstellung zur Beschreibung und Deutung der aus dem Unterricht bekannten Situationen. erläutern die technische Verwendung des Michelson-Interferometers zum Nachweis kleiner Längenänderungen.
beschreiben je ein Experiment zur Bestimmung der Wellenlänge von Schall mit zwei Sendern, Mikrowellen mit dem Michelson-Interferometer, weißem und monochromatischem Licht mit einem Gitter (objektiv)	 werten entsprechende Experimente angeleitet aus. leiten die Gleichung für die Interferenz am Doppelspalt vorstrukturiert und begründet her. beschreiben die Funktion der zugehörigen optischen Bauteile auf der Grundlage einer vorgegebenen Skizze

13.1: Quantenobjekte

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen
Die Schülerinnen und Schüler	
 beschreiben das Experiment mit der Elektronen- beugungsröhre. ermitteln die Wellenlänge bei Quantenobjekten mit Ruhemasse mithilfe der de-Broglie-Gleichung. 	 deuten die Beobachtungen mithilfe optischer Analogieversuche an Transmissionsgittern. bestätigen durch angeleitete Auswertung von Messwerten die Antiproportionalität zwischen Wellenlänge und Geschwindigkeit.
deuten die jeweiligen Interferenzmuster bei Dop- pelspaltexperimenten für einzelne Photonen bzw. Elektronen stochastisch.	beschreiben die entstehenden Interferenzmuster bei geringer und hoher Intensität.
erläutern die experimentelle Bestimmung der planckschen Konstante h mit LEDs in ihrer Funk- tion als Energiewandler.	 deuten das zugehörige Experiment mithilfe des Photonenmodells. überprüfen durch angeleitete Auswertung von Messwerten die Hypothese der Proportionalität zwischen Energie des Photons und der Frequenz.

13.2: Atomhülle + Atomkern

a) Atomhülle

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen
Die Schülerinnen und Schüler	
 erläutern die Quantisierung der Gesamtenergie von Elektronen in der Atomhülle. nennen die Gleichung für die Gesamtenergie eines Elektrons in diesem Modell. 	 wenden dazu das Modell vom eindim. Potenzialtopf mit unendlich hohen Wänden an. beschreiben die Aussagekraft und die Grenzen dieses Modells.
 erläutern quantenhafte Emission anhand von Experimenten zu Linienspektren bei Licht. erläutern einen Franck-Hertz-Versuch. erläutern einen Versuch zur Resonanzabsorption. 	 erklären diese Beobachtungen durch die Annahme diskreter Energieniveaus in der Atomhülle. beschreiben Wellenlängen-Intensitäts-Spektren von Licht. ermitteln eine Anregungsenergie anhand einer Franck-Hertz-Kennlinie.
 erklären den Zusammenhang zwischen Spektrallinien und Energieniveauschemata. beschreiben die Vorgänge der Fluoreszenz an einem einfachen Energieniveauschema. 	 benutzen vorgelegte Energieniveauschemata zur Berechnung der Wellenlänge von Spektral- linien und ordnen gemessenen Wellenlängen Energieübergänge zu. erläutern und bewerten die Bedeutung der Flu- oreszenz in Leuchtstoffen an den Beispielen Leuchtstoffröhre und "weiße" LED.

b) Atomkern

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen
Die Schülerinnen und Schüler	
 erläutern das grundlegende Funktionsprinzip eines Geiger-Müller-Zählrohrs als Messgerät für Zählraten. erläutern das Zerfallsgesetz. 	 stellen Zerfallsvorgänge grafisch dar und werten sie unter Verwendung der Eigenschaften einer Exponentialfunktion aus. erläutern das Prinzip des C-14-Verfahrens zur Altersbestimmung.
stellen Zerfallsreihen anhand einer Nuklidkarte auf.	 ermitteln aus einer Nuklidkarte die kennzeichnenden Größen eines Nuklids und die von ihm emittierte Strahlungsart. beschreiben grundlegende Eigenschaften von α-, β- und γ-Strahlung.
 erläutern das grundlegende Funktionsprinzip eines Halbleiterdetektors für die Energiemessung von Kernstrahlung. interpretieren ein α-Spektrum auf der Basis der zugehörigen Zerfallsreihe. 	 beschreiben die in Energiespektren verwendete Darstellungsform (Energie-Häufigkeits-Dia- gramm). wenden in diesem Zusammenhang die Nuklid- karte an.